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Abstract. Amplification characteristics of eigenmode acoustic waves in thin bismuth films 
are investigated quantum-mechanically in the gigahertz frequency region. Numerical results 
show that the amplification coefficient for the P-sv mode (pressure wave-shear wave with 
vertical polarisation) oscillates with the frequency in the higher-frequency region, and these 
oscillations diminish as the temperature decreases. For the SV-P mode (shear wave with 
vertical polarisation-pressure wave), the amplification coefficient oscillates with the fre- 
quency in the higher-frequency region for the EP (ellipsoidal parabolic), ENP (ellipsoidal non- 
parabolic) and MNENP (modified non-ellipsoidal non-parabolic) models, but no oscillations 
can be observed for the NENP (non-ellipsoidal non-parabolic) model. These oscillations also 
diminish as the temperature decreases. No amplification can be observed for the SH mode 
(shear wave with horizontal polarisation) in thin bismuth films. For the TR mode (total 
reflection), no oscillations of the amplification coefficient can be observed, and this appears 
to be the same property as that for Rayleigh waves. 

1. Introduction 

Bismuth is a semimetal with highly anisotropic Fermi surfaces. Its constant-energy 
wavevector surfaces differ considerably from the simple spherical surfaces of the 
degenerate electron gas. Some early work demonstrated that the Fermi surface for 
electrons in bismuth can be satisfactorily described by the ellipsoidal parabolic (EP) 
model (Shoenberg 1957). For this EP model, the relation between the energy E and the 
momentump = ( p x ,  p y ,  p z )  of conduction electrons can be expressed as 

where ml,  m2 and m3 are the effective masses of electrons along x, y and z axes, 
respectively. From theoretical calculations (Cohen 1961) and experimental results 
(Koch and Jensen 1969, Dinger and Lawson 1970, 1971,1973), it was pointed out that 
the energy band of bismuth follows the Cohen non-ellipsoidal non-parabolic (NENP) 
model. However, the magneto-optical results (Maltz and Dresselhaus 1970, Vecchi et 
a1 1976) and the longitudinal magneto-striction (Michenaud et a1 1981,1982) supported 
the Lax ellipsoidal non-parabolic (ENP) model (Lax 1958). The relation between the 
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energy and the momentum of conduction electrons for the ENP model can be expressed 
as 

E(l + EIE,) = p:/2ml + p$/2m2 + pz/2m3 ( Ib)  
where E, is the energy gap between the conduction and valence bands. For the NENP 
model, the energy-momentum relation of electrons can be expressed as 

E ( l  + E/E, )  = p:/2ml + p ; [ l  + E( l  - m2/m;)/E,]/2m2 

+ pz/2m3 + p;/4m2m$ E,. 

From experimental results (Dinger and Lawson 1970,1971,1973), it was indicated that 
the difference betweenm2 and mi is quite small, i.e. m2 = mi.  McClure and Choi (1977) 
presented a new energy-band model for bismuth electrons, which is more general than 
those currently in use. They showed that it can fit the data for a large number of magneto- 
oscillatory and resonance experiments. This new energy-band model is called the 
McClure-Choi modified non-ellipsoidal non-parabolic (MNENP) model. The relation 
between the energy and momentum of conduction electrons for this model can be 
expressed as 

E ( l  + E/E,)  = pz/2ml + p ; [ l  + E(l  - m2/m;)/E,]/2m2 + pt/2m3 

+ p$/4m2m$ E ,  - p:p;/4mlm2E, - p;pZ/4m2m3E,. (14 
The main difference between the MNENP and NENP models is that there are two extra 
terms, -p:p?/4mlmzE, and -p$p2/4m2m3Eg, in equation (Id). 

The interaction between acoustic waves and conduction electrons in solids provides 
a useful tool to investigate the electronic band structure of matter. Acoustic waves can 
be propagated along the boundary of an elastic half-space (Ezawa 1971), the amplitude 
of which falls off rapidly as one goes away from the surface. Such elastic excitations are 
called Rayleigh waves (Grishin and Kaner 1972). In an elastic medium with a stress-free 
plane boundary, acoustic waves can propagate along the boundary of an elastic half- 
space and are then reflected on the boundary (Ezawa 1971). Therefore, there exist four 
different kinds of acoustic waves other than the Rayleigh wave. They are referred to as 
the P-sv (pressure wave-shear wave with vertical polarisation) mode wave, the sv-P 
(shear wave with vertical polarisation-pressure wave) mode wave, the SH (shear wave 
with horizontal polarisation) mode wave and the TR (total reflection) mode wave. These 
four eigenmode waves are shown in figures l(u)-(d). 

If a longitudinal pressure wave propagating in a medium is incident upon the stress- 
free boundary surface, a longitudinal P wave and a sv wave are reflected from the surface. 
This is called the P-sv mode, as shown in figure l(u) .  In this case, the angle of incidence 
and reflection for the P wave are equal to each other, while the angle of reflection Bsv 
for the sv wave is smaller than the angle of reflection Bp for the P wave because the sv 
wave travels more slowly than the P wave. When a sv wave propagating in the medium 
is incident upon the stress-free boundary surface with a small angle of incidence, a sv 
wave and a P wave come out as the reflected waves from the surface, but this P wave 
cannot be totally reflected from the surface. This is called the sv-P mode, as shown in 
figure l(b). If we project the SH wave on the stress-free boundary surface, the SH wave 
is reflected from the surface with the same angle of reflection and incidence (figure l(c)). 
In this case, no wave other than the SH wave appears as the reflected wave, because the 
displacements of the SH wave are parallel to the surface. Finally, if a sv wave propagating 
in a medium is incident upon the stress-free boundary surface, a sv wave and a P wave 
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Figure 1. (a )  P-sv mode consists of an incident P wave with angle of incidence Op and reflected 
P wave with angle of reflection Op and sv wave with angle of reflection Os". ( b )  sv-P mode 
consists of an incident sv wave and reflected sv and P waves. (c) In SH mode, both incident 
and reflected waves are SH waves with the angle of incidence being equal to the angle of 
reflection. The SH wave is polarised perpendicular to the surface of the paper. (d )  TR mode 
consists of an incident sv wave with angle of incidence Os" and reflected sv and P waves when 
the angle of incidence Os" exceeds the critical angle Oc and the angle of reflection for the P 
wave is 90". 

are reflected from the surface. This longitudinal P wave is totally reflected by the surface 
as shown in figure l(d). The TR mode will occur when the angle of incidence for the sv 
wave 8sv is larger than the critical angle 8, in which the angle of reflection for the P wave 
is just 90". 

In our present paper, we wish to investigate the amplification characteristics of these 
eigenmode acoustic waves by the conduction electrons confined in a bismuth film using 
a quantum-mechanical treatment in the gigahertz region such that ql > 1, where q is the 
wavenumber of the acoustic waves and 1 is the mean free path of electrons. The inter- 
action of elastic surface wwes with conduction electrons is dominated by the de- 
formation-potential coupling in solids. The effect of energy bands on the amplification 
of Rayleigh waves in thin bismuth films has been studied using the Born approximation 
in our previous work (Wu and Tsai 1989). It was shown that the amplification coefficient 
of Rayleigh waves in thin bismuth films depends on the sound frequency and tempera- 
ture, and the NENP model in thin bismuth films does not explain very well the electronic 
transport properties in the gigahertz region at very low temperatures. For our present 
work, in order to simplify the calculations for the amplification coefficient of eigenmode 
acoustic waves, we make the following main assumptions: 

(i) The medium is elastically isotropic and the quasi-free-electron description of 
conduction electrons is valid. 

(ii) Several complications due to the crystal anisotropy, possible existence of an 
oxidised thin layer on the surface, surface roughness, and so on, are irrelevant insofar 
as the qualitative features of the results are concerned. 
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Figure2. A thin layer with the thickness a of a thin 
bismuth film and an insulating material. Acoustic 
waves propagate parallel to the surface of the film 
(xy  plane). 

(iii) Some physical parameters have the same values as those obtained in bulk 
measurements. 

(iv) The interaction of the surface phonons and conduction electrons is via de- 
formation-potential coupling. 

In section 2,  we describe the configuration of the layered system of a semimetal and 
an insulator, which we shall use for determining the amplification characteristics, and 
specify the eigenfunctions of conduction electrons for different types of energy bands. 
In section 3,  the quantisation of elastic eigenmode acoustic waves is presented. In section 
4, we calculate the interaction between conduction electrons and eigenmode acoustic 
waves. In section 5 ,  we find the amplification coefficient of eigenmode acoustic waves 
in thin bismuth films for different types of energy bands using the Born approximation. 
In section 6, some numerical results of the amplification coefficient are presented for 
the epitaxial layer of bismuth grown on an insulating material. Finally, we give a brief 
discussion of our numerical results and compare them with results for Rayleigh waves 
propagating in thin bismuth films. 

2. Electronic states in a semimetal layer 

The configuration of the amplifier that we consider for amplification of the eigenmode 
waves is shown in figure 2. A thin layer with thickness a of a semimetal such as bismuth 
is grown epitaxially on an insulating substrate with the same elastic properties as the 
semimetal layer (Maissel and Glang 1970). The Cartesian coordinates are fixed so that 
the material occupies the half-space z 2 0 and has the stress-free surface parallel to the 
xy plane. In this configuration, the motion of electrons parallel to the surface may be 
described by plane waves and those perpendicular to the surface will be described by 
some kind of standing wave depending on the structure of the potential. It is assumed 
that the potential along the z axis is a square well that has infinitely high potential barriers 
at z = 0 and z = a.  Under this approximation, the field operator Y( r )  of conduction 
electrons in the second quantised form can take the form (Tamura and Sakuma 1977) 

P 

Y ( r )  = S-lI2 2 2 b ,  exp(ik - x)@,(z)  ( 2 )  
n = l  k 

with 

@,(z)  = (2/a)”* sin(nnz/a) n = l , 2 , 3  , . . .  (3) 
where r = (x, z )  = (x ,  y ,  z ) ,  k = (kx,  ky) ,  S is a surface area, and bkn and its Hermitian 
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conjugate b:, are annihilation and creation operators of conduction electrons, respect- 
ively, satisfying the commutative relation of Fermi type. The energy levels of the 
conduction electrons Ekn for the MNENP model of bismuth are given by the relation (Wu 
and Tsai 1989) 

Since 

h2k2,,,,/2m1 + h2ky”,,,,/2m2 + n2n2h2/2m3a2 = k,T< E ,  

for bismuth at the low temperatures in which we are interested, then equation (4) can 
be expanded as 

h2k: h2ky” h4k; 
2m,a, 2m2aiJ2 4m:a,E, 

Ek, = -+Eg + $E,a, + - + ~ + 

with 

a ,  = [l + (2n2fi2n2)/(m3a2E,)]1’2. (6) 

Equation (4) can be reduced to the energy levels of electrons for the EP, ENP and NENP 
models of bismuth (Wu and Tsai 1989). 

3. Quantisation of elastic eigenmode acoustic waves in thin films 

The quantisation of the elastic wave field u(r, t) can be expanded in terms of the 
expansion coefficients, aJ and a:, as (Ezawa 1971) 

[aJuJ(r) exp(-ioJt) + aJu? (r)  exp(iwJt)] (7) 

where p is the mass density of the medium, J = ( q ,  c ,  m )  is a suitable set of quantum 
numbers, q = (qx ,  q ) is the wavevector parallel to the surface, c is the phase velocity 
defined by oJ = clqr= cq, and m specifies the propagation mode of the acoustic waves. 
Finally, uJ and its Hermitian conjugate U: are the annihilation and creation operators of 
eigenmode acoustic waves, respectively, obeying the commutative relation of Bose type, 
The explicit forms of the wavefunction uJ(r) for the propagation modes P-sv, sv-P, SH 
and TR are given as follows (Ezawa 1971). 
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3.1. P-sv mode 

+ P-’/’K exp(ipqz) (8) 

where p, 6, K and L are defined by the longitudinal sound velocity c1, the transverse 
sound velocity c, and the phase velocity c as 
p = [ (c /c , )2  - 111’2 6 = [ (c /c , )2  - l p  

4 ( p s p ( p 2  - 1) 
(p2 - 1)2 + 4p6 

(p2 - 1)2 - 4/36. 
(p2 - 1)2 + 4/38 

L =  K =  

3.2. sv-P mode 

3.3.  m mode 

(9) 

I iPq, /4 
i 

where 

LY = [l - (c/c,)2]1’2 

H = 4p(p2 - l)/[(p2 - 
G = [ (p2 - 1)2 - 4iap]/[(p2 - 1)2 + 4iap] 
+ 4iap]. 
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4. Interaction between conduction electrons and eigenmode acoustic waves 

The interaction Hamiltonian between conduction electrons and eigenmode acoustic 
waves due to the deformation-potential coupling can be expressed in the second quanti- 
sation representation as 

H = C Y * (r)V - u(r)Y?(r) dr J 
= CS-'12 2 2 [bL+q,nrbk,naJAJn,n + (Hermitian conjugate)] 

n,n' k , J  

where C is the deformation potential. The function Ai,, for each mode is given as 
follows. 

4.1. P-sv mode 

Ai tn  = - i (L)* '2( t )2  q @ir(z)[exp(-i6qz) - L exp(i6qz)]Qn(z) dz.  (15) 4 n p s c  

4.2. sv-P mode 

4.3. s ~ m o d e  

Ai',, = 0. 

4.4. TR mode 

From equation (17), it can be seen that no interaction of conduction electrons and SH 
mode acoustic waves occurs in semimetals such as bismuth. 

5. Amplification coefficient of eigenmode acoustic waves 

It is known that conduction electrons never travel freely in semimetals, but are scattered 
by a variety of sources before and after they emit or absorb the phonons we should 
observe. The induced electric field due to the deformation-potentia1 coupling can cause 
the screening of the electron-phonon interaction in semimetals. Using the Hamiltonian 
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in equation (14) and neglecting vertex corrections other than the screening effect of the 
electrons, the width r(I) of the eigenmode wave can be expressed by 

x An(k, E)An,(k - 4, E - ~ U J )  (19) 
where 

C(q) = C / E k )  E ]  = 1 -t ~ J ? N C ~ / E ~ ~ ~ C ~ E ~  

is the static dielectric constant, N is the electron concentration and EF is the Fermi 
energy. The Fermi-Dirac distribution function is 

f ( & )  = {exp[(& - EF)/kB TI + 
and An(k, E )  is the spectral function of the one-electron Green function with the quan- 
tised level n of conduction electrons. In the first approximation, we employ the Born 
approximation and then simply replace the spectral function by the 6 function, 

A,(k, E )  = 2 ~ c d ( ~  - Ekn). (20) 
In a situation where conduction electrons have a drift velocity U in the direction of 

the acoustic wavevector q,  we have to replace fiuJ by -huIx with the drift parameter 
x = Iul/c - 1. Then 

f(F - h o j )  -f(&) = -(fiL?)jX/4kgT) sech2[(e - E ~ ) / 2 k g T ] .  (21) 
From equations (19)-(21), the amplification coefficient aJ of eigenmode acoustic waves 
can be obtained as (Landau and Lifshitz 1977) 

& Y J  = - r”,,,”(-fi%x> 
hC 

- - [ C ( q ) ] 2 / A $ / 2  l d k j d e s e c h 2 [ ( e  - E F ) / 2 k B T ]  
4XCkgT r . j  

X 6(& - Ekr)6(& + hwjX - Ek-*,,). (22) 
Using the eigenvalues for energy bands of bismuth, we can obtain the more explicit 

expression for aJ as given in appendix 1. If we take the directions of the wavevector q in 
[110] crystal axis, the function I A$ l 2  for each mode is given in appendix 2. From these 
one can obtain numerical results as shown in the next section. 

6. Numerical results and discussion 

The relevant values of physical parameters for bismuth are (Harrison 1960, Smith et a1 
1964, Fal’kovskii 1968, Fukami et a1 1979): ml = mo/172, m2 = mo/0.8,  m3 = m0/88.5 
(mo is the free-electron mass), p = 9.8 g ~ m - ~ ,  N = 2.75 X lo1’ ~ m - ~ ,  eo = 10, cI = 
4.9 X 10’ cm s-l, c, = 3.8 x lo5  cm s-l, E,  = 0.0153 eV, EF = 0.0276 eV, C = 10 eVand 
a = 1 pm. Since 1 A i  l 2  = 0 for the SH mode waves, the amplification coefficient is zero 
for any frequency and electric field. Thus we do not discuss the amplification coefficient 
of SH mode waves in bismuth films. 
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Figure 3. Amplification coefficient of acoustic waves for P-sv mode as a function of frequency 
in bismuth films with x = 100 ( E  = 2 V cm-') at (a )  T = 77 K and ( b )  T = 4.2 K: (-) 
MNENP model; (- - -) NENP model; (-.-.-) ENP model; (. . . ' )  EP model. 

6.1. p-svmode waues 

In this configuration, we consider a situation in which the reflected P and sv waves are 
generated with the angle of incidence 8, = 54.74'; then tan OP = a-' = d 2 ,  In this 
case, the phase velocity c is equal to (d\/6/2)q and the wavevector q is parallel to the 
[110] axis. The frequency (v = wJ/2n)  dependence of the amplification coefficient at 
x = 100 ( E  = 2 Vcm-') is shown in figure 3. It shows that the amplification coefficient 
increases rapidly with frequency up to around v = 11 GHz and then drops off and 
oscillates with frequency. In figure 3(a) for a temperature of 77 K,  it can be seen that the 
amplification coefficient for the MNENP model is close to those for the ENP and EP models 
in the frequency region v < 55 GHz, while in the high-frequency region v > 55 GHz the 
amplification coefficient for the NENP model is close to those for the ENP and EP models. 
The oscillations of the amplification coefficient with the frequency of acoustic waves are 
different from the results for Rayleigh waves propagating in thin bismuth films (Wu and 
Tsai 1989). For a temperature of 4.2K as shown in figure 3(b), the amplification 
coefficient decreases more rapidly with frequency than that for a temperature of 77 K 
after passing the principal maximum point. Moreover, the difference between the 
amplification coefficient of the NENP model and those of the EP, ENP and MNENP models 
becomes larger. Figure 4 shows the amplification coefficients versus the drift parameter 
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Figure 4. Amplification coefficient of acoustic waves for P-sv mode versus drift parameter x 
or applied electric field E in bismuth films with v = 3 GHz at (a) T = 77 K and (b )  T = 4.2 K: 
(-) MNENP model; (- - -) NENP model; ((- . - .  -) ENP model; (. . . ,) EP model. 

x (or the applied electric field E )  with the frequency v = 3 GHz. In figure 4(a) for T = 
77 K, it can be seen that the amplification coefficient increases with the drift parameter 
x and then decreases monotonically. It can also be seen that the amplification coefficient 
for the MNENP model lies between those for the NENP model and the EP or ENP model. 
However, when the temperature decreases to 4.2 K as shown in figure 4(b), the ampli- 
fication for the EP, ENP and MNENP models increases rapidly to a maximum point and 
then decreases rapidly with the drift parameter x .  Moreover, there exists an inflection 
point in the amplification coefficient for the EP, ENP and MNENP models, but the ampli- 
fication coefficient for the NENP model appears to change monotonically with the drift 
parameter or the electric field. The deviation of the amplification coefficient for the NENP 
model from those for the EP, ENP and MNENP models becomes very large with decreasing 
temperature. 

6.2. sv-P mode waves 

Consider a situation in which the reflected sv and P waves are generated with the angle 
of incidence Os" = 35.2" (tan 8," = p-' = l / d2 ) .  In this case, the phase velocity c is 
equal to V%t and the wavevector q is also parallel to the [110] axis. The frequency 
dependence of the amplification coefficient at x = 100 ( E  = 2.2 Vcm-') is shown in 
figure 5 .  In figure 5(a) for T = 77 K, it is found that the amplification coefficient increases 
rapidly with frequency up to about v = 25 GHz and then decreases and oscillates with 
frequency. This phenomenon of oscillations with the frequency of acoustic waves is also 
different from that of Rayleigh waves (Wu and Tsai 1989). It can be seen that when 
the frequency is larger than 53 GHz, the amplification coefficient for the NENP model 
becomes closer than that for the MNENP model to those for the EP and ENP models. As 
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Figure 5. Amplification coefficient of acoustic waves for sv-P mode as a function of frequency 
in bismuth films with x = 100 ( E  = 2.2 V cm-I) at (a)  T = 77 K and (b)  T = 4.2 K: (-) 
MNENP model; (---) NENP model; (- . - . -) ENP model; (. . . .) EP model. 

the temperature decreases to T = 4.2 K as shown in figure 5(b), no oscillations of the 
amplification coefficient can be observed. It can also be seen that the inflection point in 
the amplification coefficient for the NENP model disappears. Moreover, the difference 
between the amplification coefficient of the NENP model and those of the EP, ENP 
and MNENP models becomes larger in the intermediate-frequency region. We plot the 
amplification coefficients versus the drift parameter x (or the applied electric field E )  
with the frequency v = 3 GHz as shown in figure 6.  In figure 6(a )  for a temperature of 
T = 77 K, it is shown that the amplification coefficient increases with the drift parameter 
and then decreases monotonically. It can also be seen that the amplification coefficient 
for the MNENP model lies between those for the NENP model and the EP or ENP model. As 
the temperature decreases to T = 4.2 K as shown in figure 6(b),  it can be seen that the 
difference of the amplification coefficient for the NENP model and those for the EP, ENP, 
or MNENP model becomes quite large. 

6.3. TR mode waves 

The frequency dependence of the amplification coefficient at x = 100 ( E  = 1.42 V cm-') 
is plotted as shown in figure 7. In figure 7(a),  it can be seen that the amplification 
coefficient increases with frequency up to around v = 24 GHz and then decreases with 
increasing frequency at T = 77 K. The inflection point of the amplification coefficient 
can be observed. However, as the temperature decreases to T = 4.2 K as shown in figure 
7(b),  the inflection point of the amplification coefficient for the NENP model disappears. 
This result is the same as that for Rayleigh waves (Wu and Tsai 1989). Figure 8 shows 
the amplification coefficient versus the drift parameter x (or the applied electric field E )  
with v = 3 GHz. In figure 8(a) for a temperature of 77 K, it can be seen that the 
amplification coefficient increases with the drift parameter up to x = 70 ( E  = 1 V cm-') 
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Figure 6. Amplification coefficient of acoustic waves for SV-P mode versus drift parameter x 
or applied electric field E in bismuth films with v = 3 GHz at (a)  T = 77 K and ( b )  T = 4.2 K: 
(-) MNENP model; (- --) NENP model; (- . - .  -) ENP model; (. . . .) EP model. 

5 

Figure 7. Amplification coefficient of acoustic waves for TR mode as a function of frequency 
in bismuth films withx = 100 ( E  = 1.42 V cm-’) at (a) T = 77 K and (b )  T = 4 . 2  K: (-) 
MNENP model; (---) NENP model; (- . - .  -) ENP model; (. . . .) EP model. 

and then decreases monotonically with the drift parameter. For the temperature at T = 
4.2 K as shown in figure 8(b) ,  we can see that the maximum point is shifted to around 
x = 30(E = 0.44 Vcm-’)forthe~P,~NPandMNENPmodel~,whilefortheNENPmodelthe 
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Figure 8. Amplification coefficient of acoustic waves for TR mode versus drift parameter x 
or applied electric field E in bismuth films with U = 3 GHz at (a )  T = 77 K and ( b )  T = 4.2 K: 
(-) MNENP model; (---) NENP model; (- . - .  -) ENP model; (. . . .) EP model. 

maximum point is at x = 50 ( E  = 0.72 V cm-’). The inflection point in the amplification 
coefficient for the NENP model disappears and the difference between the amplification 
coefficient for the NENP model and those for the EP, ENP and MNENP models becomes 
large at low temperatures. 

7. Conclusions 

The amplification coefficient for the eigenmode acoustic waves in thin bismuth films has 
been calculated using the Born approximation, which is valid in the region o J z  > 1 with 
z = 2 x 10-l’~ (Fal’kovskii 1968). We investigate the effect of energy bands on the 
amplification of surface phonons in thin bismuth films, neglecting the effect of the 
relaxation time of electrons. From our present calculations presented here, it shows that 
the amplification coefficient in bismuth films for the MNENP model is close to those for 
the EP and ENP models, and the amplification coefficient for the NENP model deviates 
from those for the EP, ENP and MNENP models at low temperatures. Comparing equation 
(le) with equation (Id), it can be seen that the correction termp;/4m2m;Eg in the NENP 
model causes the over-correction as the temperature decreases to low temperatures. 
However, some extra correction terms -pip;/4mlm2E, and -p;pZ/4m2m3Eg in the 
MNENP model will compensate the over-correction in the NENP model. Consequently, 
the NENP model of bismuth could not be used satisfactorily to explain the interaction of 
conduction electrons and surface phonons in the low-temperature region. 

It has been found that the amplification coefficient of the eigenmode acoustic waves 
depends strongly upon the temperature. From equation (22) and appendix 1, it can be 
shown that the amplification coefficient is roughly proportional to T1i2exp[ -F(n, n’)/ 
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TI, where F(n, n') is independent of temperature. This temperature-dependent factor 
comes from the energy-band structure of solids. Consequently, the temperature depen- 
dence of the amplification coefficient arises from the energy-band structure in solids. 
Moreover, some oscillations can be observed in the higher-frequency region for the P-sv 
and sv-P mode waves. These oscillations come from the contribution of the function 
I Ain ,  1 2 ,  which contains harmonic functions of the frequency, cos(nA) and sin(nA), due 
to the relationA = Q a / n  = 26av/c.  From appendix2, it can be seen that the oscillations 
for the P-sv mode waves are manifest much more considerably than those for the 
sv-P mode waves. Moreover, as the temperature decreases, these oscillations will be 
diminished, or even vanish, as shown in figure 5(b)  for the sv-P mode waves. From 
equation (22) (or more explicit expressions shown in appendix 1) and expressions for 
1 A$ l 2  shown in appendix 2, it can be seen that the amplification coefficient as a function 
of drift parameter x is dominated by the factor 

where C1, C2, C3(i, j )  and C4 are independent of x .  It can be shown that there exist at 
most two localextrema in equation (23). These extremadepend on the quantumnumbers 
i andj. In our numerical results, as shown in figures 4 ,6  and 8, only one maximum point 
can be observed; the second extremum point could have degenerated to an inflection 
point at low temperatures for the EP, ENP and MNENPmOdelS. Therefore, the amplification 
coefficient depends on the energy bands of solids, the temperature, the frequency of 
eigenmode waves and the applied electric field. At low temperatures, the quantum effect 
becomes important, which is valid when ql> 1 or U ~ Z  > 1 in our present calculations. 
We may disregard all defects and consider a thin film of an ideal solid with perfectly 
parallel boundary planes. Thus the scattering of surface irregularities (Steg and Klemens 
1970, Sakuma 1972) can be neglected at low temperatures. 

f ( x )  = x{exP[Cl(x - C2I2 - G(4j)G - C4)l) (23) 
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Appendix 1. Explicit forms of aJ 

A1 .le EP model 
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and 

A1.2. E N P  model 

x a,1/2uj{exp[-nEgR(q; i,j)/2kB TI ) /  A$ l 2  
i j  

where 

A1.3. NENP model 

where K,(z) is the modified Bessel function of order v (Abramowitz and Stegun 1964, 
Gradshteyn and Ryzhik 1965). 

Al .  4 .  M N E N P  model 

where 

and 

T(q;  i , j )  = 16a, + 2q2h2ai/mlE, - s q n ~ T / ~ ( m ~ E , ) - l / ~ [ R ( q ;  i , j )  - ai ] "2 .  
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Appendix 2. Explicit forms of I A{j l2 

A2.1. P-sv mode 

1 - (--l)‘+jcos(nA) - 20(1  + 0)-2 sin’(nA) 
X 

[(i - j ) 2  - A2]’[(i + j ) ’  - A2I2 (All)  

A = 8qa/n (A121 

where 

and 

(82 - 1)’ - 4/36 
( / 3 2  - 1 ) 2  + 4/36‘ 

D =  

A2.2. sv-Pmode 

8q2h 4 1 - (-1)’” C O S ( ~ A )  
= (-I(:) A2B2i2j2 

n3p6c [(i - j ) ’  - A212[(i + j ) ’  - A2I2 

where 

4(/36)”2(/32 - 1) 
(8’ - 1)’ + 4/38. 

B =  

A2.3.  m mode 

1 A $ / ’  = 0. 

A2.4. TR mode 

64q2h (A’)2/3(P2 - l)2i2j2[l - ( - l ) i + j  exp(-nA’)]’ 
l 2  = (=) (z) [(/3* - q4 + 16a’B2][(i - j ) *  + (A’)2]2[(i + j) ’  + 

(A17)  
where 
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